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Abstract. We report accurate dynamical calculations for V-V energy transfer 
in the collision of two HF(v = 1) molecules for a realistic potential energy 
surface. 
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Close coupling (CC) calculations [1-6] provide the most systematic available 
method for performing converged quantum mechanical calculations of state-to- 
state collisional transition probabilities. So far converged transition probabilities 
have been calculated for vibrational-rotational transitions in atom-diatom col- 
lisions but only for rotational transitions in systems with four or more atoms 
[3-11 ]. Here we report the first converged transition probabilities for vibration-to- 
vibration (V-V) energy transfer in three-dimensional collisions. The system con- 
sidered is 

HF(Vl=I,jI=O)+HF(v2=I,j2=O)~HF(v~=2,j~)+HF(v'2=O,j'a) (1) 

with zero total angular momentum, where vi and ji denote vibrational and 
rotational quantum numbers and primes denote final values. 

The interaction potental Vin t assumed for the present calculation is a modification 
of the rigid rotor interaction potential of Alexander and DePristo [12]. We 
introduce vibrational dependence into this potential by generalizing the approxi- 
mation of Gianturco et al. [13] for the short-range vibrational force and by 
incorporating the correct ri-dependence of  the permanent multipole moments, 
where ri is the bond length of molecule i. Thus we multiplied the r-dependent 
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coefficients [12] A~2x(r),  where r is the distance between the centers of mass 
of the two molecules, by the function [13] exp[ax,,2~ (rl + r2 -2re)],  where aA,x~a -- 
d In AAl.2./drlr=r,~, where r,p is a high-energy translational turning point (4.1ao) 
and re is the equilibrium intermolecular distance (1.733ao), and we replaced the 
dipole and quadruple moments  by /ze+/3alA~a(ri- re) and | yA,A2x(ri-- re), 
respectively. The parameters needed to specify our modifications are given in 
Table 1. The diatom vibrational potential is taken from Murrell and Sorbie [14] 
and the vibrational-rotational energy levels are calculated from the parameters 
given by Webb and Rao [15]. Vibrational matrix elements were evaluated using 
a new quadrature scheme [16], and we did not neglect the rotational-quantum 
number dependence of the vibrational wave-functions. 

In the CC calculations, the system wave function is expanded in products of 
radial functions times symmetrized vibrational-rotational-orbital basis functions 
[17]. The use of N basis functions leads to N coupled differential equations, 
which are solved by R matrix propagation [18, 19] using a code vectorized for 
the Control Data Corporation Cyber 205 pipelined vector computer [20,21]. 
Relative to estimated times for unvectorized calculations on a Digital Equipment 
Corporation VAX 11/780 with scalar floating point accelerator, we achieved 
enhancements in computation speed increasing from a factor of 1200 for N = 400, 
which was used in early convergence studies, to a factor of 1700 for N = 948, 
which is the largest N considered here. 

The CC calculations yield state-to-state transition probabilities P j ~  for process 
(1) for a set of initial relative translational energies E~I. Because the two molecules 
are indistinguishable, these probabilities are final states which are combinations 
o f v ~ = 2 ,  "'" = j~, v~ 0, j~ and v~ =0, j~; v ;=2 ,  j~ [17]. The sum of the rotational 
quantum numbers is denoted j~um and the sum of P j ~  over all processes involving 
j~ +j~ quanta of rotational excitation is called p)~V. The total V-V probability, 
obtained by summing the previous probability over pj~V, is called pVV. The 
present calculations of these probabilities are very well converged with respect 
to integration ranges and step sizes, with the largest source of error being due 
to the finite number of terms in the wavefunction channel expansion. The final 
converged calculations are based on 948 channels, with the R matrix for these 

Table 1. Parameters for the interaction in (a.u.) 

A 1 A2 A a~x2 x flx~A2~ Yx~x2x 

0 0 0 2.38 
0 1 1 2.42 
1 0 1 2.42 

1 1 2 0.738 

1 2 3 0.850 

2 1 3 0.850 

/~, | 0-7066a 

0.838 

0.918 3.00 

0.918 3.00 
1.64 b 

aRef. [12] used /x  =0,716 a.u. 
u Rev. [12] used O = 1.93 a.u. 
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Table 2. Partially summed transition probabilities 

Er~ 1 (meV) Po vv Pl vv p~V pW 

2.455 0.88 0.035 0.003 0.92 
29 0.92 0.037 0.014 0.98 
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channels  propagated  from 2ao to 150ao. The channel-se lec t ion cri terion that  yields 

these channels  is Jsum <- 10 for Vl + V2 --< 2, Jsum -< 8 for Vl + v2 = 3 or 4, and  jsum ~ 1 
p.VV 

Vl + v2 = 5. The best converged values of P w and  Jsum for two values of Ere~ are 
shown in Table  2. The convergence checks, based on calculat ions with N = 694, 
824, 880, and  948, indicate  that  p W  is converged to about  0.01 and  the p,VV Jsum are 
converged to about  +2 in the last significant figure. 

p.VZ 
The largest j~j~ for the final basis are given in Table 3. The most  striking aspect 
of these rota t ional  energy distr ibut ions is the peaking of the V-V energy transfer  
cross sections at a final state that is n o n r e s o n a n t  by 172 c m - l a n d  the fact that 

t rans i t ion  probabi l i t ies  to other channels  with smaller  t rans la t ional  energy defects 
are smaller  by factors of >-3 x 101. It would  be interest ing to learn the sensitivity 
of this result  to the na ture  of the potent ia l  [22]. 

Al though the present  calculat ions,  being restricted to zero total angular  momen-  
tum, cannot  be compared  to experiment ,  they provide benchmarks  for testing 
approximate  dynamica l  theories that can more easily be appl ied  to all total 
angular  momenta .  

Fur ther  details of  these calculat ions,  as well as converged calculat ions of t ransi t ion 

probabi l i t ies  for rota t ion- to-rota t ion energy transfer  in H F - H F  collisions in 

which the molecules are assumed rigid, will be publ i shed  elsewhere [23]. 
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Table 3. State-to-state transition probabilities 

J~ J~ AE(cm-1) a 2.455 b 29 b 

0 0 172 0.88 0.92 
1 0 134 0.03 0.03 
0 1 131 0.006 0.01 
1 1 93 0.0006 0.012 
2 0 58 0.002 0.0009 

a Translational energy defect (172 cm -I = 21 meV) 
b Erel in meV (29 meV = 234 cm -l) 
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